TIM MILLER ASSOCIATES, INC.

10 North Street, Cold Spring, New York 10516 (845) 265-4400 Fax (845) 265-4418

May 21, 2003

Mr. James Petro, Chairman Town of New Windsor Planning Board Town Hall, 555 Union Avenue New Windsor, New York 12553

Re: Meadowbrook Estates Subdivision, Response to Traffic Comments

Dear Mr. Petro:

This letter responds to the April 2, 2003 comments from John Collins Engineers, P.C. and by the May 15, 2003 comments from the New York State Department of Transportation. These letters are contained in Attachment A.

Comments on the April 2, 2003 letter have been numbered from 1 to 16 in Attachment A and are addressed below:

Response 1: The traffic study was forwarded to the New York State Department of Transportation (NYS DOT). Attachment A contains the May 15, 2003 NYS DOT comments.

Response 2: Comment noted regarding the reduction in number of proposed units.

Response 3: Mr. Akhtar Shareef (NYS DOT) confirmed in a phone call in early April that he had received EAF Appendix F. This material was available for his May review letter contained in Attachment A.

Response 4: Comment noted. This agrees with the NYS DOT first comment.

Response 5: The growth of the existing traffic volumes to a 2005 design year appears appropriate given the reduction in the units. As part of a Sensitivity analysis a 2008 design year was examined and is included in Attachment B.

Response 6: The traffic to and from the Hannaford Supermarket will alter trip distribution at Five Corners. Residents shop for food daily and weekly. As residents in the NYS Route 94 corridor generally already travel on NYS Route 94 to reach shopping opportunities in the Five Corners areas, many of these Hannaford trips are already on the network. Those trips are diverted trips or passby trips already on the NYS Route 94 corridor west of Five Corners.

A sensitivity analysis was prepared that includes traffic from the Hannaford site as though they were new trips. These trips have been included in a revised no-build volumes in Attachment C as part of the sensitivity analysis described in Attachment B.

Responses 7, 8 and 9

Peak hour congestion in the Five Corners area traffic is anticipated to continue to encourage use of the shorter and quicker routing to the Thruway interchange area via Bethlehem Road. This area contains Stewart Airport, NYS Route 300 interchanges with I-87 and I-84, the Newburgh Mall, Walmart, Home Depot and other shopping/employment destinations. To clarify the issue of road construction timing and to further examine the distribution a sensitivity analysis was completed as shown in Attachment B. This sensitivity analysis assumes that 100 percent of the site generated traffic uses the NYS Route 94 access. The alternative routing to/from Bethlehem Road the north would be via NYS Route 94 and the Five Corners intersection.

Response 10: The potential of Reserve traffic using the site will be reduced in many ways. The internal site layout does not promote such a routing. The construction of Independence Drive provides improved access to the west. The construction of a traffic signal at Mt. Airy Road this fall would permit easier and safer turns on NYS Route 94. The closing of the Old Route 94 western access to NYS Route 94 would make travel more circuitous. Regardless of these changes a sensitivity analysis was completed as shown in Attachment B. This Sensitivity analysis assumes the Reserve traffic through the site is balanced by site traffic through the Reserve.

Response 11: The final configuration of the Old Route 94 (east) intersection with NYS Route 94 and the closing of Old Route 94 western portion would be reviewed by the NYS DOT as part of the State Highway Work Permit application process. The applicant discussed the concept of narrowing the Old Route 94 east access to NYS Route 94 and closing the Old Route 94 west access with the NYS DOT, as this will require a highway work permit from the NYS DOT.

Response 12: The traffic signal is part of the traffic improvements for the High School.

Response 13: A Sensitivity analysis in Attachment B examined a later build year, more no-build projects, and change in site distribution. These changes did not alter the left turn volumes into the site from NYS Route 94. As discussed in the February 2003 report, the five vehicles in the AM peak hour and fifteen in the PM peak hour are below guidelines for a left turn lane. Furthermore the traffic signal at NYS Route 94/Mt. Airy Road should contribute to lower speeds and periodic gaps in westbound NYS Route 94 traffic.

Response 14: The intersection of NYS Route 94 and Jackson Avenue should be monitored in the future with respect to the potential to meet signal warrants. The intersection was reevaluated as part of the sensitivity analysis in Attachment B. The additional no-build traffic, if it occurs as assumed, would increase delays in the existing and No build conditions. However the sensitivity analysis does not add

additional site traffic to this intersection. Thus, this intersection was examined only with the signal improvement verifying the improvement was still valid (level of service C or better) in the Build condition with additional traffic from other projects.

Response 15: Trips refer to Jackson Avenue/NYS Route 94 intersection.

Response 16: The corrected figure is shown in Attachment E. This figure change does not alter the level of service calculations provided in the EAF.

The following are responses to the four comments from the New York State Department of Transportation.

- 1) Comments concerning the acceptability of methodology are noted.
- 2) Mr. Steve Poisman of NYS DOT Design Group was contacted in October of 2002. Mr. Martin Evans has been contacted also.
- 3) The Traffic Engineering and Safety Group has been contacted early in SEQRA process and will be continue to be involved in the work permitting process.
- 4) Following the SEQRA determination, final site plans would be developed and sent to the Department's local residency office as part of the Highway permit process.

I trust that the above is responsive to the comments received on this matter.

Sincerely,

James A. Garofalo, AICP

Director of Transportation

TIM MILLER ASSOCIATES, INC.

C: P. Greatey, PE, John Collins Engineers

Aktar Shareef, NYS DOT

Mark Edsall, PE

David Weinberg, Land Master

Neil Novesky, Town of Cornwall Planning Board Chairman

Attachment A TRAFFIC AND TRANSPORTATION COMMENT LETTERS

JOHN COLLINS ENGINEERS, P.C. TRAFFIC-TRANSPORTATION ENGINEERS

== 11 BRADHURST AVENUE • HAWTHORNE, N.Y. • 10532 • (914) 347-7500 • FAX (914) 347-7266 :

MEMORANDUM

TO:

Mark Edsall, P.E.

FROM:

Philip J. Grealy, Ph.D., P.E.

DATE:

April 2, 2003

RE:

Meadowbrook Estates

Town of New Windsor/Town of Cornwall, New York

PROJECT: No. 676

o. 676

The following is our initial technical review of the Traffic Impact Study contained in the RAF dated December 20, 2002 for the above referenced development prepared by Tim Miller Associates, Inc.

- o As we understand, the Traffic Study has been forwarded to NYSDOT for their review. Comments from the NYSDOT should be obtained.
- 2 o It appears that the Project has been reduced from some 181 single family homes to some 90 single family homes which is addressed in the Traffic Study.
- The EAF addressed the "Five Corners" intersection in Appendix "F". This Appendix was missing from our document and had subsequently been forwarded to our office. It should be confirmed that Appendix "F" was forwarded to the NYSDOT.
- 4 o The Existing Traffic Volumes appear reasonable.
- 5 O The Existing traffic volumes were grown by an appropriate background growth rate of 2% per year to a 2005 Design Year. Would a Design Year of 2007/2008 be more appropriate?

- o Traffic for other proposed developments in the area was included as part of the No-Build Condition including traffic for The Reserve. However traffic for the recently approved Hannaford Supermarket was not included. A sensitivity analysis to include traffic for the Hannaford Supermarket should be provided. This may be significant for the Route 94 and Meadowbrook Road (East) intersection.
- 7 o Access to the project is proposed to Meadowbrook Road (via Route 94) and through The Reserve. It appears by the site distribution figure (Figure 8) that 45% of the traffic will arrive and depart through The Reserve with 25% via Mt Airy Road and 20% via a new roadway (Independence Drive). Noting the above, the following should be considered:
- Based on the review of the existing roadway network and existing traffic volumes, the 45% to/from Bethlehem Road appears to be high. Confirmation of the arrival and departure patterns should be provided. Depending on this information, a sensitivity analysis may be necessary assuming more traffic to/from the Meadowbrook Road access (Via Route 94).
- Assuming the 45% through The Reserve, the time frame for the completion and opening of the new roadway may be critical, especially since the Design Year for the Meadowbrook Estates project is 2005. Depending on the time frame of The Reserve and the time frame of the new roadway, a sensitivity analysis assuming all site traffic utilizing Meadowbrook Road may be required.
- 10 O Also, there the potential for some of The Reserve traffic to access Route 94 through Meadowbrook Estates. A sensitivity analysis should be conducted assuming more traffic to/from the Meadowbrook Road access (Via Route 94).

- Meadowbrook Road (East) currently intersects Route 94 at an acute angle. The Applicant is proposing to realign the Meadowbrook Road east approach to improve current conditions. Based on the information provided, it appears that acceptable sight distance will be provide at the reconfigured Route 94/Meadowbrook Road (East) intersection with the proposed realignment of this intersection. The final configuration of this intersection will have to be reviewed with the NYSDOT.
- o Traffic Study indicates that the improvements to the intersection of Route 94 and Mount Airy Road/access to the Cornwall High School are anticipated to be in place prior to the opening of the High School.
- The Traffic Study indicates that a separate left turn lane on Route 94 into Meadowbrook Road (East) would not be required.

 However, in consideration of the above distribution comments and additional traffic growth comments, the left turn lane requirement may have to be re-evaluated.
- o The Traffic Study indicates that the Route 94/Jackson Road intersection will operate at a Level of Service "F" with and without the proposed development. The Traffic Study also indicated that to improve the operation of this intersection, a traffic signal would be required under future conditions. This intersection should be monitored in the future to determine if traffic signal warrants will be met. In addition, depending on the above distribution comments and additional traffic growth comments, this intersection may have be re-evaluated.

- 15 o As an editorial comment, on page 15 under heading 5.2 Build Level of Service, the opening sentence of "the proposed Meadowbrook Estates will be contributing 19 trips in the AM Peak and 24 trips in the PM peak" is unclear. Does this refer to the Route 94 and Meadowbrook Road (west) intersection. As noted on Table 8, the Project will generate a total of 73 AM trips and 97 PM trips to the area roadway network.
- o Figure 10 should show the Site Generated PM Peak Hour Traffic not the Build PM Peak Hour Traffic.

The above comments need to be addressed before we can finalize our review.

STATE OF NEW YORK DEPARTMENT OF TRANSPORTATION 4 BURNETT BOULEVARD POUGHKEEPSIE, N.Y. 12603

ROBERT A. DENNISON HI, P.E.

HAMBADA, H HERDL DINDIBRIMMOD

May 15, 2003

Mr. James Petro, Chairman Planning Board Town of New Windsor 555 Union Avonus New Windsor, New York 12553-6196

Re:

Draft Environmental Impact Statement

Meadowbrook Estates

Town of Cornyall/Town of New Windsor

Orange County

Dear Mr. Petro:

We have completed our review of the traffic and transportation impacts contained in the Draft Environmental Impact Statement for the referenced project and have the following comments to offer:

- The methodology utilized in the traffic impact study including the existing traffic volumes, trip generation rates, trip distribution rates, 2% growth rate, no-build traffic volumes and resulting build traffic volumes is acceptable.
- The Department is currently working on improvements to Route 94 (PIN 804110, from Reily Rd, to Rte. 32) within the vicinity of the referenced project. We suggest that Mr. Martin Evans of our Design Group (845-431-5865) should be contacted to incorporate any changes to the Department's plans as part of this project
- Elimination of the existing Old Route 94 Vest/Route 94 intersection, realignment of Old Route 94, safety related issues and the proposed location of realigned access to Route 94 would be reviewed by our Traffic Engineering and Safety Group as part of highway work permit process.
- We would like to remind you that a State Highway Work Permit will be required for any curb cuts and/or work within the Route 94 right-of-way. An application and final site plans should be forwarded to this Department's local residency office, as soon as possible to initiate the review process.

If you have any questions or need additional information, we can be reached at (845)431-5793.

Very muly yours,

Akhter A. Shareef

Senior Transportation Analyst

ATTACHMENT B

Sensitivity Analysis Assumed Conditions

The Sensitivity analysis considered the cumulative effect of three changes in the traffic analysis volumes as described below:

- 1. Additional two percent per year for three years to 2008.
- 2. Additional No Build traffic from Hannaford Supermarket and Five Corners' area.
- 3. Increased traffic at the access to NYS Route 94 equivalent to rerouting all site traffic to/from Bethlehem Road toward NYS Route 300 via Five Corners. Reserve traffic going through the site is balanced by site traffic going through the Reserve development.

Traffic volumes for the sensitivity analysis including No Build, site distribution, site generated traffic, Build Condition are shown in Attachment C using the figure numbers corresponding to the EAF figures.

Sensitivity Analysis Results

Table 1 shows the resultant levels of service for the Build condition assuming the above sensitivity changes.

Mount Airy/NYS Route 94 signal timing in the AM peak would need to be adjusted to address additional through traffic to maintain D or better. The PM peak hour remains level of service C or better.

NYS Route 94 Meadowbrook East (old Route 94) southbound level of service declines one service level compared to the Build Condition. The AM peak hour level of service C becomes D and the PM peak hour level of service D goes to E.

NYS Route 94 Meadowbrook West (old Route 94): no change in level of service from the Build Condition.

NYS Route 94/Jackson Avenue intersection had level of service F in No Build without additional traffic. The redistribution of site traffic does not add any site traffic to this intersection. If signalized, mitigation for AM peak hour would remain unchanged at level of service B. The PM peak hour would be level of service C or better. Additional green time for through movement would compensate for additional through traffic.

Bethlehem Road /Mt Airy: This was level of service B or better in the Build Condition. Above analysis assumptions reduce traffic in this location so no further analysis was done.

Orrs Mill Road/Jackson Avenue: no change in level of service between the Build Condition and the Sensitivity Condition.

Level of service calculations are shown in Attachment D.

3	Lane Group	AM We	ekday Peal	k Hour '	I PM Wer	ekday Peak	(Hour
Intersection Roads	(Approach Direction -Movement)	Volume to Capacity Ratio		Level of	Volume to Capacity Ratio	, 	Level of Service
Mount Airy Road &	NYS Route 94						
NYS Route 94	EB-L	0.04	9.9	A	0.58	28.4	C*
	EB-TR	0.96	47.1	D*	0.65	15.1	В
NYS Route 94	WB-L	0.87	51.1	D*	0.26	10.9	B*
	WB-TR	0.52	18.4	В	0.89	26.2	C*
Mt. Airy HS Drive	NB-LTR	0.54	29.9	С	0.71	27.4	С
Mt. Airy Road	SB-LTR	0.85	54.1	D	0.74	31.7	С
	Total		40.3	D*		23.5	C*
NYS Rt. 94 & Meado	wbrook Rd (East)						
NYS Route 94	EB-LTR	0.01	8.2	Α	0.02	9.5	Α
	WB-LTR	0.00	9.3	Α	0.00	8.8	Α
Meadowbrook Rd.	NB-LTR	0.02	16.6	С	0.01	21.4	С
	SB-LTR	0.27	26.7	D*	0.30	42.1	E*
NYS Rt. 94 & Meado							
NYS Route 94	W8-LT	0.00	9.0	Α	0.01	8.8	Α
Meadowbrook Rd.	NB-LR	0.07	22.2	С	0.03	14.1	В
Orrs Mill Road & Jac	ckson Avenue						
Orrs Mill Road	EB-LTR	0.01	7.7	Α	0.02	8.2	Α
	W8-LTR	0.00	7.9	Α	0.00	7.5	Α
Jackson Avenue	NB-LTR	0.10	13.3	В	0.15	14.9	В
· 	SB-LTR	0.54	21.2	С	0.41	18.9	С
NYS Rt. 94 & Jackson	on Ave. (w/ signal)						
NYS Route 94	EB-LTR	0.72	17.2	В	0.73	14.3	В
	WB-LTR	0.47	11.8	В	0.76	14.7	В
Jackson Avenue	NB-LTR	0.30	16.2	В	0.59	26.9	C*
} * * * * * * * * * * * * * * * * * * *			(0.50		
1	SB-LTR	0.44	18.4	В	0.50	23.5	C*

NB = Northbound, SB = Southbound, EB = Eastbound, WB = Westbound

L = left, R = right, T = through, TR = through and right, (e.g. WB-L = Westbound left).

Italics denotes signalized intersection.

^{*} Indicates a decline in the level of service from Build Condition.

Attachment D

LEVEL OF SERVICE CALCULATIONS

			Н	CS2	000	DET	AILE	D F	REP	or i						<u>-</u>	 -	
General Infor											nation							
Analyst Agency or Co. Date Performe Time Period		r						Ai Ju Ai	nterse rea T urisdi nalys rojec	ype ction is Ye	n 7 ear <i>E</i>	ill ot Town Build	her a n of C Sens	pad & Ro reas fornwall sitivity rook Est				
Volume and T	iming Input																**	
			<u> </u>	EI		57			WB			Τ.		NB			SB	
Number of land	es N		LT 1	+ ' 1	Ή	RT 0	1 1		TI-		RT 0	_	_T 0	TH 1	RT 0	LT O	TH_	RT
Lane group	1		L	T#			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		TR		-	+		LTR	10	10	1 1 70	0
Volume, V (vpl	h)		18	40		135	23		283		37	+-	8	8	100	400	LTR	-
% Heavy vehic	<u>.</u>		9	170		9	20		15		15		 0	20	100	100	19	21
Peak-hour fact			0.77	0.7		0.77	0.8		0.87		0.87	+	85	0.85	0.85	+		24
Pretimed (P) o			A	F		P	10.8 A		P		P.		 D	0.65 P	0.65 P	0.61 P	0.61 P	0.61
Start-up lost tir			2.0	2.			2.0		2.0		-	+		2.0	+	+-	2.0	P
	ffective green, e		2.0	2.	_		2.0	_	2.0			+		2.0	 	+-	2.0	+
Arrival type, A			3				3		3			+		3	 -	+	3	+
Unit extension	, UE		3.0	3.			3.0		3.			╁		3.0	╁┈─	-	3.0	+
Filtering/meter	ing, I		1.000	1.0	000		1.00		1.000			 		1.000	┼	\vdash	1.000	+
Initial unmet de	emand, Q _b		0.0	О.			0.0		0.0			+-		0.0	+	 	0.0	+-
Ped / Bike / R1	~~~~~		0	_		0	0				0	1)	-	0	0	-	0
Lane width			11.0	11	.0		11.0	о	11.0	, ,		\top		13.0	 	1	10.0	+
Parking / Grad	arking / Grade / Parking N			7	?	N	N		-2		N	\ \	v	2	N	N	-6	l _N
Parking maned	Parking maneuvers, N _m			十			\top					T		!	 		\dagger	
Buses stoppin	g, N _B		0	0	,		0		0			1		0		†	0	+-
Min. time for p	edestrians, G _p			3	1.2				3.2	?				3.2			3.2	
Phasing	EW Perm	Excl. L			03		04				Perm			06)7	08 G =	3
Timing	G = 36.0 Y = 5	G = 6. $Y = 5$	<u>u</u>	G = Y =		G = Y =			G = Y =		= 23.0 = 5		G = Y =		G =	G = Y =		
Duration of An	alysis, T = 0.25	<u>. </u>	_	Ė			<u>. </u>				= 5		Y = Cycle Length				Y =	
Lane Group (Capacity, Contr	ol Delay	, and l	os i	Detern	ninati	on	.,										
		LT	E		RT	- [-	r	WB Th		R'	-	LT		NB TH	RT	1	SB	T ==
Adjusted flow	rate, v	23	69		- ```	26		368				<u> </u>		195	IN I	LT	TH 229	RT
Lane group ca	pacity, c	554	72			30		713		-	\dashv		-	358		 	269	+ -
v/c ratio, X		0.04	0.9	96		0.8		0.5		\vdash	\dashv			.54			0.85	
Total green ra	tio, g/C	0.59			 	0.5		0.4			+		-	.29			0.29	
Uniform delay,	, d ₁	9.9	21.	.4	<u> </u>	29.	1	15.0			一		-	4.1			26.9	
Progression fa	ctor, PF	1.000	0 1.0	00		1.0	00	1.00	00		\neg		-+	000		<u> </u>	1.000	†
Delay calibrati	ion, k	0.11	0.5	50		0.4	0	0.50	<u> </u>		_		o	.50			0.50	
Incremental de	elay, d ₂	0.0	25.	8		22.	0	2.7	,		\neg			5.8		<u> </u>	27.2	†
Initial queue d	elay, d ₃																	Ī
Control delay		9.9	47.	.1		51.	1	18.4	4				2	9.9			54.1	
Lane group LO	os	A	D			D		В						С			D	
Approach dela	у		45.9				32.1	1					29.9			54.1		
Approach LOS	3		D				С	С					С			D		
Intersection de	elay		40.3								10	nters	ectio	n LOS			D	
HCS2000 TM				Co	pyright 4	5 2000 L	niversity	y of Fl	orida, A	ll Rig	his Reser	ved		-				Version 4.1c

	TWO-Y	WAY STOP	CONTR	OL S	SUN	IMARY				
General Information	n		Site I	nfori	mat	ion	·			
Analyst	JAG		Inters	ection			Rt 94 & East	Mead	owbr	ook
Agency/Co.	TMA		Jurisc	liction			Easi Town of	Corn	wall	
Date Performed	5/20/03		i	sis Ye	ar		Build Se			
Analysis Time Period	AM Peak I	lour		010 10	<u></u>		Duna de	1151(17)	ιγ	
	eadowbrook E	states								
East/West Street: Route Intersection Orientation:							lowbrook i	Road		
		4	Study	renoc	1 (111)	s): 0.25	···			
Vehicle Volumes ar	<u>ia Aajustm</u>									
Major Street		Eastbound	1				Westbo	und		
Movement	1	2 T	3			4	5			6
Volume	L 	505	R				T 240			R
Peak-Hour Factor, PHF	0.73	0.73	0.73			0 0.88	340 0.88			<u>13</u> 0.88
Hourly Flow Rate, HFR	6	691	0.73		0.88		386	 	(14
Percent Heavy Vehicles	9				-	16				
Median Type			•	Undi	vide		•			
RT Channelized			0							0
Lanes	0	1	0	0		0	1			0
Configuration	LTR					LTR	T			
Upstream Signal		0					0			
Minor Street						Southbo	und			
Movement	7	Northbound 8	9			10	11	<u> </u>		12
	L	Т Т	R			L	T			R
Volume	1	0	2			43	0			14
Peak-Hour Factor, PHF	0.38	0.38	0.38			0.90	0.90		-	0.90
Hourly Flow Rate, HFR	2	0	5			47	0			15
Percent Heavy Vehicles	0	0	0			0	0			0
Percent Grade (%)		1					2			
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0							0
Lanes	0	1	0			0	1			0
Configuration		LTR	<u></u>				LTR			
Delay, Queue Length, a	and Level of S	ervice								
Approach	EB	WB	}	Vorthb	oun	d	S	outhb	ounc	-
Movement	1	4	7	8		9	10	1	1	12
Lane Configuration	LTR	LTR		LTF	₹			LT	R	
v (vph)	6	0		7				62	2	
C (m) (vph)	1122	842		318	3			22	7	
v/c	0.01	0.00		0.02	2			0.2	7	
95% queue length	0.02	0.00		0.0				1.0		
Control Delay	8.2	9.3		16.0				26.		
LOS	A	A		С				D		
Approach Delay	_			16.6	 5			26.7		
Approach LOS	_			C				D		

	TWO-	WAY STOP	CONTR	OL S	SUN	MARY					
General Information	1		Site	nfori	mat	ion					
Analyst	JAG		Inters	ection			Rt 94 & West	Meado	owbi	ook	
Agency/Co.	TMA		Jurisc	liction			Town of	Corn	vall	_	
Date Performed	5/20/03		11	sis Ye	ar		Build Se				
Analysis Time Period	AM Peak	Hour					00110		.,	-	
"	adowbrook E	states									
East/West Street: Route						et: Mead	dowbrook	Road			
Intersection Orientation:	East-West		Study	Period	<u>d (hr</u>	s): 0.25	25				
Vehicle Volumes ar	d Adjustm	ents									
Major Street		Eastbound					Westbo	und			
Movement	11	2	3			4	5			6	
	L	Т	R		L		Т			R	
Volume	0	513	0		2		374			0	
Peak-Hour Factor, PHF	0.72	0.72	0.72	<u> </u>	0.89		0.89		(2.89	
Hourly Flow Rate, HFR	0	712	0		2		420			0	
Percent Heavy Vehicles	0					0	<u> </u>				
Median Type				Undi	vide	d					
RT Channelized			0				<u> </u>			0	
Lanes	0	1	0	0		0	1			0	
Configuration			TR	TR		LT	<u> </u>				
Upstream Signal		0					0				
Minor Street		Northbound					Southbo	und			
Movement	7	8	9			10	11			12	
	L.	Т	R			L	T			R	
Volume	10	0	0			1	1			1	
Peak-Hour Factor, PHF	0.63	0.63	0.63			0.25	0.25		(0.25	
Hourly Flow Rate, HFR	15	0	0			0	0			0	
Percent Heavy Vehicles	0	0	0			0	0			0	
Percent Grade (%)		0					0				
Flared Approach		N					N				
Storage		0					0				
RT Channelized			0							0	
Lanes	0	0	0			0	0			0	
Configuration		LR	<u> </u>	1			<u></u>				
Delay, Queue Length, a											
Approach	EB	WB		<u>lorthb</u>			1	outhb		<u> </u>	
Movement	1	4	7	8		9	10	11	<u> </u>	12	
Lane Configuration		LT		LR			<u> </u>				
v (vph)		2		15			<u> </u>	<u> </u>			
C (m) (vph)		897		224				<u> </u>			
v/c		0.00		0.07			,				
95% queue length		0.01		0.2	1			<u> </u>			
Control Delay		9.0		22.2	2			<u> </u>			
LOS		A		С							
Approach Delay	-			22.2	2						
Approach LOS		_	l	С							

	TWO	-WAY STOP	CONTR	OL S	UN	IMARY			
General Informatio	n		Site I	nforn	nat	ion			
Analyst	JAG	<u> </u>	Inters	ection			Orrs Mili	/Jacksc	n
Agency/Co.	TMA			liction		· · · · · · · · · · · · · · · · · ·	Town of		
Date Performed	5/20/03		_	sis Ye	ar		Build Se		
Analysis Time Period	AM Peak	Hour							·
Project Description M	leadowbrook	Estates							
East/West Street: Orrs	Mill Road		North/	South	Stre	et: Jack	son Avenu	е	
Intersection Orientation:	East-West		Study	Period	(hr	s): 0.25			
Vehicle Volumes a	nd Adjustr	nents							
Major Street		Eastbound					Westbo	und	
Movement	. 1	2	3			4	5		6
	L	T	R			L	Т		R
Volume	14	170	20			1	104		60
Peak-Hour Factor, PHF		0.72	0.72			0.86	0.86		0.86
Hourly Flow Rate, HFR	19	236	27			1	120		69
Percent Heavy Vehicles	4					11			
Median Type				Undiv	ride	d			
RT Channelized			0						0
Lanes	0	1	0	0		0	1		0
Configuration	LTR					LTR			
Upstream Signal		0					0		
Minor Street		Northbound					Southbo	und	
Movement	7	8	9			10	11		12
	L	T	R			L	Т		R
Volume	1	32	3			143	50		7
Peak-Hour Factor, PHF	0.71	0.71	0.71		0.78		0.78		0.78
Hourly Flow Rate, HFR	1	45	4			183	64		8
Percent Heavy Vehicles	5	5	5			4	4		4
Percent Grade (%)		10					-2		
Flared Approach		N					N		
Storage		0					0		
RT Channelized			0		•	· · · · · · · · · · · · · · · · · · ·			0
Lanes	0	1	0			0	1		0
Configuration		LTR				 	LTR	-	
Delay, Queue Length,	and Level of		······································					<u></u>	
Approach	EB	WB	ı	Vorthbe	ըսու	d		outhbou	ınd
Movement	1	4	7	8		9	10	11	12
Lane Configuration	LTR	LTR	*	LTR	,		70		12
			-					LTR	
v (vph)	19	1		50			<u> </u>	255	<u> </u>
C (m) (vph)	1373	1251		486				472	-
v/c	0.01	0.00		0.10	_			0.54	
95% queue length	0.04	0.00		0.34	!			3.16	
Control Delay	7.7	7.9		13.3				21.2	
LOS	Α	Α		В				С	
Approach Delay	-	_		13.3	?			21.2	
Approach LOS				В				С	····
HC\$2000 TM		pyright © 2000 Univer	-i 6T1i-1-		. 10	•	L		Version 4.1

HCS2000TM

Copyright © 2000 University of Florida, All Rights Reserved

Page 5

·····			н	S2000	o~ DE	ΞΤΑ	ILED	RE	POR	т						
General Infor	mation							_	Infori							
Analyst Agency or Co. Date Performe Time Period	JAG TMA	r						Area Juris Ana	rsectio a Type sdiction lysis Y ject ID	n 7 ear <i>E</i>	ll other own of uild Sig	4 & Jackso areas Cornwall anal Sensi brook Est	tivity	ie		
Volume and 1	iming Input															
			LT	EB TH	R	-	LT		VB TH	RT	I LT	NB TH	RT	+ _{LT}	SB TH	RT
Number of lan	es, N		0	1	10		0		1	0	0	1	0	0	1	0
Lane group	<u>'</u>		<u> </u>	LTR	+			L	TR		 	LTR	 	1	LTR	
Volume, V (vp	h)		95	375	75	5	54	2	266	35	26	29	64	67	62	69
% Heavy vehic	cles, %HV		0	0	0		0	\top	0	0	0	0	0	0	0	0
Peak-hour fac	tor, PHF		0.93	0.93	0.9	3	0.93	0.	.93	0.93	0.74	0.74	0.74	0.89	0.89	0.89
Pretimed (P) o	or actuated (A)		Р	P	P	1	Ρ		P	P	P	Р	Р	P	P	P
Start-up lost ti				2.0				2	2.0			2.0			2.0	
	ffective green, e		<u> </u>	2.0				-+-	2.0	<u> </u>		2.0	<u> </u>	<u> </u>	2.0	
Arrival type, A	Τ			3	┸			_	3			3		<u> </u>	3	
Unit extension	-		<u> </u>	3.0				_	3.0	<u> </u>		3.0	╀		3.0	<u> </u>
Filtering/meter				1.000				_	.000		↓_	1.000			1.000	ļ
Initial unmet d			<u> </u>	0.0	4			- 0	0.0	<u> </u>	 -	0.0	 -	 	0.0	<u> </u>
	TOR volumes		0	 	0		0			0	<u> </u>		0	0		0
Lane width		12.0 12.0 12.0 ng N N N N N N N		12.0	 	 	12.0	 								
Parking / Grad			N	0_	<u> </u>	<u>' </u>	N	_	0	<u> </u>	<u> ^ </u>	-2	N.	N N	2	N
Parking mane			 	 -	+		<u> </u>	+		ļ	↓ —	 _	—-		 _ _	ļ
Buses stoppin			1	0			 		<i>0</i> 3.2		·	0	ــــــــــــــــــــــــــــــــــــــ	· ·	0	<u> </u>
Phasing	edestrians, G _p	02		3.2		1	04			S Perm	┸ᠸ	3.2 06		<u> </u> 07	3.2	0
	G = 30.0	G =		G =		G	; =			= 20.0	G		G =	<u> </u>	G =	
Timing	Y = 5	Y =		Y =		Υ	<u> </u>		Υ =	= 5		Υ= '			Y =	
	nalysis, T = 0.25 Capacity, Contr	al Dolor	. and l	OS Dat	ormin	ntio					lc	ycle Lengt	h, C =	60.0		·
Lane Group	сарасну, сопи	or Deray	r, and E		<i>eriiiii</i>	auoi		NB		T E		NB		1	SB	
		LT			T.	ŁT		TH	R	Т	LT	TH	RT	LT	TH	RT
Adjusted flow	rate, v		586		_		3	382				160		<u> </u>	223	
Lane group ca	apacity, c		812	-]			312				535		<u> </u>	506	
v/c ratio, X	<u> </u>		0.72				_	.47				0.30		<u> </u>	0.44	<u> </u>
Total green ra		_	0.50					.50	_	\dashv		0.33		 	0.33	ļ
Uniform delay		+	11.7		\dashv			9.8	_			14.8	-	-	15.6	 -
Progression for Delay calibrate		+	1.00		-			.000	+			1.000			1.000	├
Incremental d		+	0.50 5.5	-	 {		-	0.50 2.0	+			0.50 1.4	 -	-	0.50 2.8	
Initial queue d			7.5	+			+		-	\dashv		·· ·	 	 	2.0	+
Control delay			17.2	. 			1	1.8		\dashv		16.2	 	 	18.4	
Lane group L		+-	В	\dashv	\dashv			В	\neg	- +		В		1	В	
Approach del		_	17.2				11.8		L	\dashv	16.2				18.4	
Approach LO		\top	В		\dashv		В				E			10.4 B		
Intersection d	lelay	\top	15.8								ntersec	tion LOS			В	
HCS2000 TM		l					rsity of Florida, All Rights Reserved						Version 4.1			

C	A <i>t</i>		HC	S2000°	DET										
General Informanalyst Analyst Agency or Co. Date Performe Time Period	JAG TMA	ır				!	Site Info ntersect Area Typ Jurisdicti Analysis Project II	ion e on Year	Mt.Ai All ot Towr Build	her a of C Sens	ad & Ro reas ornwall sitivity rook Esta				
Volume and 1	iming Input								二						
			LT	EB TH	RT	LT	WB TH	RT	+,	LT	NB TH	RT	LT	SB T TH	ОТ
Number of lan	es, N		1	1	0	1	1	0	_	0	1	0	0	1	RT 0
Lane group	<u>'</u>		L	TR		L	TR	+	-		LTR	+	╁	LTR	
Volume, V (vp	h)		65	439	39	67	588	127	- 8	37	12	149	102	6	20
% Heavy vehic	cles, %HV	-	6	6	6	10	3	3		20	10	20	6	6	6
Peak-hour fac	tor, PHF		0.86	0.86	0.86	0.92	0.92	0.92	-	85	0.85	0.85	0.53	0.53	0.53
Pretimed (P) o	or actuated (A)		P	P	P	P	P	P	- 1	P	P	P	P	P	P
Start-up lost ti			2.0	2.0	i	2.0	2.0	+	+	· 	2.0	+′	+	2.0	+-
	ffective green, e	!	2.0	2.0	1	2.0	2.0	+	+		2.0	†	+	2.0	+
Arrival type, A	T		3	3	†	3	3	_	+		3	+	1	3	
Unit extension	 ı, UE		3.0	3.0	t	3.0	3.0	+	+		3.0	+	 	3.0	+-
Filtering/meter	ring, I		1.000	1.000	 	1.000	1.000	+	+		1.000	+	1	1.000	
Initial unmet d	emand, Q _b		0.0	0.0		0.0	0.0	+	+		0.0	 	+	0.0	
Ped / Bike / R			0		0	0		0	+	0		10	0	-	10
Lane width			11.0	11.0		11.0	11.0	1	+		13.0	 	+	10.0	+-
Parking / Grade / Parking			N	2	N	N	-2	 	٦,	N	2	l _N	l _N	-6	N
Parking mane	Parking maneuvers, N _m			+		+	+-	+	+			+	 	╁┷	+
Buses stopping			0	0		0	0	1	十		0	 -	1	1 0	
Min. time for p	edestrians, G			3.2			3.2		╁		3.2	-		3.2	I
Phasing	EW Perm	02		03 04		04	NS Per		n		06	07		0	8
Timing	G = 30.0 $Y = 5$	G = Y =	G =			G =		= 20.0)	G =		G =		G =	
Duration of A	11 = 3 nalysis, T = 0.25			Y =	I	Y =	<u>IY</u>	= 5		Y ≃ Cvc	le Lengt	Y =	50 O	Y =	
	Capacity, Conti		r, and L	OS Deter	minatio	on				10,0	io congr	11, 0 - 1	30.0		
		17	EE			W					NB			SB	
Adjusted flow	rate, v	76	555		L1 73		77	RT	LT	\rightarrow	TH 291	RT	LT_	TH 241	RT
Lane group c	· · · · · · · · · · · · · · · · · · ·	130			278		77				110		 	326	
v/c ratio, X		0.58			0.2		89).71		\vdash	0.74	╂—
Total green ra	ntio, g/C	0.50			0.5		50				.33		 	0.74	
Uniform delay		10.6			8.6	<u>-</u>	0.5				7.5		 	17.7	+-
Progression f	· · · · · · · · · · · · · · · · · · ·	1.00			1.00		000			<u> </u>	.000		 	1.000	+
Delay calibrat		0.50			0.5		50				.50		 	0.50	†
Incremental d	elay, d ₂	17.8	-		2.3		2.8			_	0.0		 	14.0	┼
Initial queue o						_				T			 -	 	+
Control delay		28.4	15.	1	10.	9 26	5.2			2	7.4	-	<u> </u>	31.7	1
Lane group L	os	С	В		В		2				С		 -	С	
Approach del	ay		16.7	- 1	_	24.9				27.4			 	31.7	I .
		-	В		\dashv	С				c			 	C	
Approach LO	_		0			U				U					

	TWO-	WAY STOP	CONTR	OL S	SUN	IMARY	. <u>.</u>	<u> </u>			
General Information	1		Site I	nfori	mat	ion			_		
Analyst	JAG		Inters	ection		<u> </u>	Rt 94 &	Mead	owbr	ook	
Agency/Co.	TMA		¬∥				East				
Date Performed	5/20/03		Jurisd			 -	Town of				
Analysis Time Period	PM Peak	Hour	Analy	sis Ye	ar	-	Build Se	nsitivi	ty		
Project Description Me	adowhrack F	Cototoo							_		
East/West Street: Route		states	North/	South	Stro	ot: Mose	lowbrook l	Pood			
Intersection Orientation:						s): 0.25	IOWDIOOK I	toad			
Vehicle Volumes ar		· onto	Olddy	CHOC	1 (111)	37. 0.20					
	iu Aujustii						181 (1	-			
Major Street Movement	1	Eastbound 2	3		_		Westbo	und			
Movement		T	R		<u> </u>	4	5 T	- -t		6	
Volume	15	505	1 N		_	0	626			R 49	
Peak-Hour Factor, PHF	0.81	0.81	0.81		-	0.84	0.84			0.84	
Hourly Flow Rate, HFR	18	623	1			0	745			58	
Percent Heavy Vehicles	3					3					
Median Type				Undi	vide	d					
RT Channelized			0							0	
Lanes	0	1	0		0		1			0	
Configuration	LTR				LTR						
Upstream Signal		0					0				
Minor Street		Northbound					Southbound				
Movement	7	8	9			10	11			12	
	L_	T	R			L	Т			R	
Volume	1	0	2			27	0			10	
Peak-Hour Factor, PHF	0.75	0.75	0.75			0.90	0.90).90	
Hourly Flow Rate, HFR	1	0	2			30	0			11	
Percent Heavy Vehicles	0	0	0			0	0	1		0	
Percent Grade (%)		1					2				
Flared Approach		N					N				
Storage		0					0				
RT Channelized			0				<u> </u>			0	
Lanes	0	1	0			0	1			0	
Configuration		LTR					<u>L</u> TR				
Delay, Queue Length, a	nd Level of	Service	·-								
Approach	EB	WB	1	orthb	oun	d	s	outhb	ound		
Movement	1	4	7	8		9	10	1	1	12	
Lane Configuration	LTR	LTR		LTF			1	LT.			
v (vph)	18	0		3				41			
C (m) (vph)	816	952		222				13			
v/c	0.02	0.00		0.0				0.3			
95% queue length	0.07	0.00		0.0				1.1			
				_							
Control Delay	9.5	8.8		21.			 	42.		 -	
LOS	A	A		C		L	 	E			
Approach Delay				21.			 	42.	7		
Approach LOS		-	<u> </u>				L	E			

	TWO-	WAY STOP	CONTR	OL S	SUN	MARY					
General Informatio	n	· .	Site I	nfor	mat	ion					
Analyst	JAG		Inters	ection			Rt 94 & West	Mead	owbr	ook	
Agency/Co.	TMA		lurisc	liction			Town of	Corn	wall		
Date Performed	5/20/03			sis Ye	ar		Build Se				
Analysis Time Period	PM Peak	Condition		313 10	a,		Duild Se	TISILIVI	it y	·	
	eadowbrook E	states	1								
East/West Street: Rout							adowbrook Road				
ntersection Orientation:			Study	Period	<u> (hr</u>	s): 0.25	5				
Vehicle Volumes a	<u>nd Adjustn</u>								- 100		
Major Street	<u> </u>	Eastbound	1				Westbo	und			
Movement	1 1	2	3		4		5			6	
I-1	L	T	R			<u> </u>	T			R	
Volume	0	515	2	-		6	644			0	
Peak-Hour Factor, PHF	0.81 0	0.81	0.81		0.87 6		0.87			0.87	
Hourly Flow Rate, HFR		635	2		0		740			0	
Percent Heavy Vehicles Median Type	1 "			1 10 01	۔ لیے اُن			1			
RT Channelized	 		1 0	Undi	vide	U	<u> </u>	I			
_anes	0	1	0							0	
Configuration	 		TR		0 LT		1			0	
Jpstream Signal	 	0	1K			LI	0				
Minor Street							Southbound		•		
Movement	7	Northbound 8	1 0			40		und 1		40	
vioverneni			9			10	11			12	
Volume	L 1	T	R			<u>L</u>	T			R	
volume Peak-Hour Factor, PHF	•	0 0.58	6			0	0			1	
Hourly Flow Rate, HFR	1	0.58	0.58 10	<u>'</u> ———		0.25 0	0.25 0			0.25 0	
Percent Heavy Vehicles	******	0	0		0		0			0	
Percent Grade (%)	 	0	1				0			<u> </u>	
Flared Approach		TN					N N	Т		·	
Storage		0					0	\dashv			
RT Channelized			0				Ť			0	
Lanes	0	0	0			0	ō			0	
Configuration		LR							-	<u> </u>	
Delay, Queue Length,	and Level of	Service							•		
Approach	EB	WB	1	Vorthb	oun	d	S	outhb	ounc	1	
Movement	1	4	7	8		9	10	1		12	
ane Configuration		LT		LR		<u> </u>	├ ┈	 	•	- '-	
v (vph)		6		11			·				
C (m) (vph)		956		406	5						
v/c		0.01		0.03	3						
95% queue length		0.02		0.08							
Control Delay		8.8		14.						 	
LOS		A		, т. В	•		<u> </u>				
Approach Delay				14.	1	<u> </u>		L		L	
Approach LOS				14. B	<u>, </u>						

	TWO	-WAY STOP	CONTR	OL S	UN	IMARY			
General Information	n	Site I	nforr	nat	ion				
Analyst	JAG		Inters	ection			Orrs Mill	/Jackson	
Agency/Co.	TMA			iction			_	Cornwall	-
Date Performed	5/20/02		Analy	sis Ye	ar		Build Se	nsitivity	
Analysis Time Period	PM Peak	Hour							
Project Description 1	1eadowbrook	Estates							
East/West Street: Orrs	Mill Road		North/	South	Stre	et: Jacks	son Avenu	e	
Intersection Orientation	: East-West		Study	Period	(hr	s): 0.25			
Vehicle Volumes a	ınd Adjustr	nents							
Major Street		Eastbound					Westbo	und	· · · · · · · · · · · · · · · · · · ·
Movement	1	2	3			4	5		6
	L L	T	R			L	Ţ		R
Volume	13	108	3			2	172		163
Peak-Hour Factor, PHF		0.72	0.72	2		0.77	0.77		0.77
Hourly Flow Rate, HFR	-i	149	4			2	223		211
Percent Heavy Vehicles	3 1						-		
Median Type	 		T -	Undiv	/ide	d	Τ		
RT Channelized	1 2		0				 		0
Lanes	0	1	0	U		0	1		0
Configuration	LTR		-			LTR			·
Upstream Signal		0 Northbound					0		
Minor Street	Northbound 9			9		40	Southbo	und	
Movement	7	8				10	11		12
Values	L	T	R			L	T		R
Volume Peak-Hour Factor, PHI	2 0.81	0.81	8			89 0.83	33		28
Hourly Flow Rate, HFR		54	0.81 9		107		0.83 39		0.83 33
Percent Heavy Vehicles		0	0		5		5		5
Percent Grade (%)	' ` 	10	1			<u> </u>	-2		5
Flared Approach	-	N N					r		
	- 						N	 	
Storage		0					0		
RT Channelized	+		0						0
Lanes	0	1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0			0	1		0
Configuration		<u>LTR</u>	<u> </u>				LTR		
Delay, Queue Length,									
Approach	<u>EB</u>	WB		Vorthb	oun			outhboun	T
Movement	1	4	7	8		9	10	11	12
Lane Configuration	LTR	LTR		LTF			ļ	LTR	
v (vph)	18	2		65				179	
C (m) (vph)	1131	1434		427	•			435	
v/c	0.02	0.00		0.15	5			0.41	
95% queue length	0.05	0.00		0.53	}			1.98	
Control Delay	8.2	7.5		14.9	}			18.9	
LOS	Α	Α		В			- · · · · · · · · · · · · · · · · · · ·	С	T —
Approach Delay	-	_	_	14.9)			18.9	<u> </u>
Approach LOS		, 	_	B	•			C	
TM							L		

HCS2000[™]

Copyright © 2000 University of Florida, All Rights Reserved

Detailed Report

									_							
Conoral Info	nation		НС	S2000°	DET	AILE										
General Inform Analyst Agency or Co. Date Performe Time Period	JAG TMA	r					Inte Area Juri Ana	ersection ersect	e A on l Year E	Rou All c Tow Build	other a on of Co d Signa	Jacksoreas ornwall al Sensit ook Esta	ivity	ie		
Volume and T	iming Input									Ţ						
			LT	EB TH	RT	1		WB TH	RT	+	LT	NB TH	RT	LT	SB TH	RT
Number of lane	es, N		0	1	0	0		1	0	十	0	1	0	0	1	0
Lane group				LTR		\top	L	TR	1	十		LTR		 	LTR	
Volume, V (vpl	ר)		89	448	36	57	7 5	521	65	十	72	61	43	25	52	109
% Heavy vehic	les, %HV		0	0	0	0		0	0	1	0	0	0	0	0	0
Peak-hour fact	or, PHF		0.87	0.87	0.87	0.8	6 0	0.86	0.86	10	0.84	0.84	0.84	0.92	0.92	0.92
Pretimed (P) o	r actuated (A)		Р	P	Р	P	,	P	P	十	P	P	P	P	P	P
Start-up lost tir	ne, I,			2.0			- 2	2.0		1		2.0			2.0	†
Extension of e	ffective green, e	ı		2.0			2	2.0		T		2.0		T	2.0	
Arrival type, A	r			3				3				3			3	T
Unit extension	, UE			3.0				3.0	<u>L</u>			3.0			3.0	T
Filtering/meter	ing, I			1.000			1.	.000				1.000			1.000	
Initial unmet de				0.0			(0.0		$oxed{\mathbb{I}}$		0.0			0.0	
Ped / Bike / R1	FOR volumes		0		0	0			0		0		0	0		0
Lane width				12.0			1.	2.0		⊥		12.0			12.0	
Parking / Grad			N	0	N	N		0	N	1	N	-2	N	N	2	N
Parking maneuvers, N _m		·		1		_			<u> </u>	\perp						
Buses stopping				0			L	0	<u> </u>	_		0	<u> </u>	╄	0	
Min. time for p			<u> </u>	3.2				3.2				3.2		<u> </u>	3.2	
Phasing	EW Perm G = 35.0	02 G =		03 G =	G =		4		S Perm = 15.0	_	G=	06	G =	07	G =	8
Timing	Y = 5	Y =		Y =		Y =			= 5		Y =		Y =		Y =	
	alysis, T = <i>0</i> .25											Cycle Length		50.0		
Lane Group (Capacity, Contr	ol Delay			minati	on	14/0									
		LT	EE TH		+.	Т	WB TH	F	रा	LŤ		NB TH	RT	LT	SB TH	RT
Adjusted flow	rate, v		658				748		T	,	2	10			202	1
Lane group ca	pacity, c		901				988				3	55			407	
v/c ratio, X			0.73	3			0.76				0	.59			0.50	
Total green ra	tio, g/C		0.58	}			0.58				О	.25			0.25	
Uniform delay,			9.1				9.3				1	9.8			19.3	
Progression fa	actor, PF		1.00	0	┸		1.000	丄			1.	000			1.000	
Delay calibrati			0.50		\bot		0.50				0	.50			0.50	
Incremental de			5.2	\perp	\bot		5.4				7	7.1		$oxedsymbol{oxedsymbol{oxed}}$	4.3	
Initial queue d	elay, d ₃	\perp	\perp		+			+						<u> </u>		<u> </u>
Control delay	<u> </u>	+	14.3	 	+		14.7	+				6.9		↓	23.5	
Lane group LO		_	B		+							С		 	С	
Approach dela	·		14.3		+	14.					26.9			<u> </u>	23.5	
Approach LOS			В		+	В					С			 	С	
Intersection delay 16.9									rsectio				В			

